Abstract

We propose an accurate and computationally efficient 3D scattering model, multi-layer Born (MLB), and use it to recover the 3D refractive index (RI) of thick biological samples. For inverse problems recovering the complex field of thick samples, weak scattering models (e.g., first Born) may fail or underestimate the RI, especially with a large index contrast. Multi-slice (MS) beam propagation methods model multiple scattering to provide more realistic reconstructions; however, MS does not properly account for highly oblique scattering, nor does it model backward scattering. Our proposed MLB model uses a first Born model at each of many slices, accurately capturing the oblique scattering effects and estimating the backward scattering process. When used in conjunction with an inverse solver, the model provides more accurate RI reconstructions for high-resolution phase tomography. Importantly, MLB retains a reasonable computation time that is critical for practical implementation with iterative inverse algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call