Abstract
Retinopathy is a progressive and common retinal disease that most progressive diabetics suffer from and causes blood vessels in the retina to swell and leak blood and fluid. This condition requires timely diagnosis via medical experts to prevent causing visual loss among patients. To enhance the feasibility of checking many persons, diverse deep-learning schemes have recently been developed for diabetic retinopathy detection. In this paper, retinopathy image detection system based on diverse deep learning schemes (VGG-19, DenseNet-121, and EfficientNet-B6) has been presented. The implemented deep learning schemes with multi-label classification are trained and tested using the Asia Pacific Tele Ophthalmology Society (APTOS-2019) dataset, and the two combined datasets Indian Diabetic Retinopathy Image Dataset (IDRiD) and Messidor-2. The system outcomes of classification are exhibited as sensitivity, precision, F1Score, and accuracy measurements, and the system performance is compared with recently existing related systems. The attained outcomes indicate that the implemented EfficientNetB6 network outperforms peers’ schemes and related systems via realizing supreme accuracy using balanced multi-class retinopathy datasets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have