Abstract

During the last two decades, a variety of models have been applied to understand and predict changes in land use. These models assign a single-attribute label to each spatial unit at any particular time of the simulation. This is not realistic because mixed use of land is quite common. A more detailed classification allowing the modelling of mixed land use would be desirable for better understanding and interpreting the evolution of the use of land. A possible solution is the multi-label (ML) concept where each spatial unit can belong to multiple classes simultaneously. For example, a cluster of summer houses at a lake in a forested area should be classified as water, forest and residential (built-up). The ML concept was introduced recently, and it belongs to the machine learning field. In this article, the ML concept is introduced and applied in land-use modelling. As a novelty, we present a land-use change model that allows ML class assignment using the k nearest neighbour (kNN) method that derives a functional relationship between land use and a set of explanatory variables. A case study with a rich data-set from Luxembourg using biophysical data from aerial photography is described. The model achieves promising results based on the well-known ML evaluation criteria. The application described in this article highlights the value of the multi-label k nearest neighbour method (MLkNN) for land-use modelling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.