Abstract

We introduce a partially coherent beam, called a multi-hyperbolic sine-correlated (MHSC) beam, by employing a multi-hyperbolic sine function to modulate the spectral degree of coherence. Based on the extended Huygens-Fresnel principle and second-order moments of the Wigner distribution function, we derive the analytical expressions for the spectral intensity, the root-mean-square (rms) angular width and the M2 factor in turbulent atmosphere. Numerical results show that the intensity profile, which keeps the dark-hollow invariant in free space, will be gradually destroyed by the turbulence along the propagation distance. We believe that the MHSC beams have significant advantage over the hyperbolic sine-correlated beams for reducing the turbulence-induced degradation, especially for the MHSC beams with a higher beam order N. The effects of the beams parameters and the turbulent atmosphere on the beam quality are analyzed in detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.