Abstract
Fine-grained visual classification aims to classify similar sub-categories with the challenges of large variations within the same sub-category and high visual similarities between different sub-categories. Recently, methods that extract semantic parts of the discriminative regions have attracted increasing attention. However, most existing methods extract the part features via rectangular bounding boxes by object detection module or attention mechanism, which makes it difficult to capture the rich shape information of objects. In this paper, we propose a novel Multi-Granularity Part Sampling Attention (MPSA) network for fine-grained visual classification. First, a novel multi-granularity part retrospect block is designed to extract the part information of different scales and enhance the high-level feature representation with discriminative part features of different granularities. Then, to extract part features of various shapes at each granularity, we propose part sampling attention, which can sample the implicit semantic parts on the feature maps comprehensively. The proposed part sampling attention not only considers the importance of sampled parts but also adopts the part dropout to reduce the overfitting issue. In addition, we propose a novel multi-granularity fusion method to highlight the foreground features and suppress the background noises with the assistance of the gradient class activation map. Experimental results demonstrate that the proposed MPSA achieves state-of-the-art performance on four commonly used fine-grained visual classification benchmarks. The source code is publicly available at https://github.com/mobulan/MPSA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.