Abstract

Physiological sensing of virtual reality (VR)-induced stressors are increasingly utilized to improve human training and assess the impact of gaming difficulty-induced stress on a person's health and well-being. However, the prior art sparsely explores the multi-level cardiovascular dynamics for psychophysiological demands in a VR environment. This treatise discusses the experimental findings and physiological interpretations of various heart rate variability (HRV) metrics extracted from 31 participants during a Go/No-Go VR-based shooting task across multiple timeframes. The VR-shooting exercise consists of firing at the enemy targets while sparing the friendly ones for different shooting difficulty levels: low-difficulty and high-difficulty with in-between baselines. Ex-perimental results demonstrate consistent shooting difficulty-induced stress patterns at multi-granular levels in response to the heterogeneous inputs (exogenous and endogenous factors). The physiological interpretations highlight the intricate inter-play between cardio-physiological components: sympathetic and parasympathetic response across multiple timescales (sessions and blocks) and shooting difficulty levels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.