Abstract

Based on conformal mapping method, a two dimensional, multi-functional lens structure is proposed and designed in this work. The lens is an infinitely-long, gradient-index dielectric cylinder with a semi-elliptic cross-section. The lens can first be considered like a flattened Luneburg lens, which produces highly-directive electromagnetic waves by adjusting the feed position along the line connecting the two foci. It also functions like an Eaton lens. When an incoming beam impinges on the same line but outside the two foci, it will be guided through the lens structure and take a U-turn. Besides, if properly shaped, the structure can also be used as a waveguide bend. The lens can be realized using non-resonant metamaterials with inhomogeneous hole arrays. Simulation results demonstrate excellent performance of the lens and agree well with theoretical prediction. The designed lens can be used in the electromagnetic control. And it is especially useful in the real optical lens system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call