Abstract

Metal matrix composites (MMCs) are the materials-of-choice for a large range of important applications under harsh service conditions. However, owing to the high phase contrast between the matrix and the reinforcements, the strength-ductility conflict of MMCs is still outstanding. Here we fabricated a novel aluminum (Al) matrix composite reinforced by deformable, cobalt-zirconium-boron (CoZrB) metallic glass nanoparticles. The amorphous CoZrB/Al composite with only 2.0 vol.% particle reinforcements possessed a uniaxial tensile strength of 387.0±1.2 MPa, showing over 80% improvement over the unreinforced pure Al matrix at a similar uniform elongation. The strength-ductility synergy of the composite was also significantly superior to that of the composite reinforced by fully crystallized nanoparticles. These findings were rationalized by the unique multi-functionality of the amorphous particle/matrix interfaces, which effectively transferred the load from the matrix to the particles, coordinated the co-deformation of the nanoparticles and the matrix, and imparted a transgranular fracture mode in the composite with extensive matrix plastic deformation. The methodology developed in this study was shown to be generally effective for other matrix and metallic glass nanoparticle compositions, and our work may shed new light on the development of high-performance metal matrix composites for advanced structural applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call