Abstract
Optimizing the operation of Pumped-Hydro Energy Storage (PHES) requires accurately representing nonlinearities, such as reservoir geometry and water-power conversion efficiency. While traditional methods like Mixed-Integer Linear Programming (MILP) offer theoretical guarantees, they rely on approximations that can lead to suboptimal decisions and costly redispatch or penalties. Because of its inherent approximations, MILP is a low-fidelity optimization model. In this paper, we propose a multi-fidelity approach that combines MILP with a Surrogate-Based Optimization Algorithm (SBOA). MILP solutions are used as warm-starts for the SBOA, which refines the solutions using a high-fidelity simulator of PHES dynamics and redispatch costs. This allows the SBOA to handle nonlinearities and improve the initial MILP solution by exploring areas with higher expected value. Our approach is tested on a PHES unit that participates in the energy and reserve markets in Belgium. The results show that, despite the extensive efforts made in MILP modeling, decisions can still be improved through smart integration with SBOAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.