Abstract
Understanding the physiological mechanisms that underlie the exquisite frequency discrimination abilities of listeners remains a central problem in auditory science. We describe a computational model of the cochlea and auditory nerve that was developed to evaluate the frequency analysis capabilities of a system in which the output of a basilar membrane filter, transduced into a probability-of-firing function by an inner hair cell, is encoded on the auditory nerve as the instantaneous sum of firings on a critical band of fibers surrounding that filter channel and transmitted to the central nervous system for narrow-band frequency analysis. Performance of the model on vowels over a wide range of input levels was found to be robust and accurate, comparable to the Average Localized Synchronized Rate results of Young and Sachs [J. Acoust. Soc. Am. 1979, 66, 1381-1403]. Model performance in perceptual threshold simulations was also evaluated. The model succeeded in replicating psychophysical results reported in classic studies of critical band masking.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have