Abstract

The growth and physical properties of GaN crystallized in a multi feed-seed (MFS) configuration by High Nitrogen Pressure Solution (HNPS) growth method are presented in detail. The conversion of free standing HVPE-GaN crystals to free standing HNPS-GaN is the basis of the MFS configuration. The influence of the experimental conditions (i.e. growth temperature, temperature gradient, etc.), the c-plane bowing of the initial substrate, the electrical properties of HNPS-GaN, and the rate and mode of growth from solution are analyzed. We show that the HNPS-GaN crystals have better structural quality than their HVPE-GaN seeds. The defect density decreases with increasing growth temperature, reaching 5×105cm−2 for crystals grown at 1420°C or higher. In contrast, the free carrier concentration in HNPS-GaN increases with increasing growth temperature, reaching 7×1019cm−3 for samples crystallized at 1440°C. Thus the possibility to obtain good quality plasmonic GaN substrates for laser diodes can be realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.