Abstract
Electrochemical machining (ECM) technology holds significant potential for applications in high accuracy engineering and manufacturing. To confine the electrolyte region during ECM and mitigate the effects of reaction products and heat generation, an electrolyte suction tool has been proposed. However, the complex electric field distribution on the anode surface during the application of pulse voltage, limits the further utilization of ECM with suction tool. A multi-physics simulation model is established to calculate the region of electrolyte confinement by the suction tool, current density distribution within the electrolyte region, and material removal. The model considers the combined effects of polarization and double layer, and all key parameters are calibrated through classical electrochemical testing experiments rather than fitted based on the predicted results. This study elucidates the transient response of current density on the anode surface during the application of pulse voltage. The simulation accuracy is validated by comparing experimental and simulated current waveforms, as well as material removal profiles under different pulse parameters and electrode shapes. This research is of great significance for improving surface precision and controllability of complex structures in ECM with suction tool, promoting its further application in the field of precision machining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.