Abstract

Imparting high thermal conductivity to electrocaloric refrigeration polymers is a promising solution for efficiently synergizing and accurately managing the vast heat generated by high-power density electronics. We employed a sacrificial template method to construct a three-dimensional thermally conductive SiOC ceramic network and embedded it in the electrocaloric polymer. The electrocaloric composite film with a 1 wt. % SiOC achieved a synergistic improvement in heat transfer and electrocaloric cooling, while the thermal diffusivity of the 10 wt. % composites increased sixfold. The three-dimensional ceramic network not only acted as a heat transfer pathway but also induced the transition of the electrocaloric polymer chain to a high-entropy state, increasing the number of dipole entities that could be driven by the electric field. The system reached a refrigeration temperature change of 2 K at a field strength of as low as 30 MV m−1. The high-entropy and high-crystallized electrocaloric composite film induced by the SiOC thermal conductive interface provides a tool for synergistic thermal management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call