Abstract

A circulant-permutation-based spatially-coupled (SC) code is constructed by partitioning the circulant permutation matrices (CPMs) in the parity-check matrix of a block code into several components and piecing copies of these components in a diagonal structure. By connecting several SC codes, multi-dimensional SC (MD-SC) codes are constructed. In this paper, we present a systematic framework for constructing MD-SC codes with notably better cycle properties than their one-dimensional counterparts. In our framework, the multi-dimensional coupling is performed via an informed relocation of problematic CPMs. This work is general in the terms of the number of constituent SC codes that are connected together, the number of neighboring SC codes that each constituent SC code is connected to, and the length of the cycles whose populations we aim to reduce. Finally, we present a decoding algorithm that utilizes the structures of the MD-SC code to achieve lower decoding latency. Compared to the conventional SC codes, our MD-SC codes have a notably lower population of small cycles, and a dramatic BER improvement. The results of this work can be particularly beneficial in data storage systems, e.g., 2D magnetic recording and 3D Flash systems, as high-performance MD-SC codes are robust against various channel impairments and non-uniformity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.