Abstract

Changing landscape patterns would alter ecosystem components and functions, affecting the supply of ecosystem services. Understanding the spatial and temporal variations of ecosystem services is an important basis for ecosystem management and planning decisions and is of great significance for the realization of regional sustainable development. Based on Landsat TM/OLI remote sensing images from 1990, 2000, 2010, and 2020 in the Li River Basin, we explored the spatial and temporal variabilities of ecosystem services in the Li River Basin over the past 30 years, from both horizontal and vertical dimensions, using modified equivalence factor method and spatial autocorrelation analysis. The research findings are as follows: (1) Forestland has consistently been the dominant landscape type in the Li River Basin, with its area continuously increasing, while farmland, water bodies, and grassland have decreased, and construction land and bare land have increased. (2) The value of ecosystem services in the Li River Basin exhibited an initial increase followed by a decrease trend, with a net increase of 9.20 × 108 yuan. Forestland contributed the most to the value of ecosystem services. (3) Hydrological regulation and climate regulation are the dominant functions of the Li River Basin’s ecosystems, accounting for over 50% of the total contribution. (4) The value of ecosystem services per unit area increases with increasing slope and elevation. The segments with slopes ranging from 15 to 25 degrees and elevation zones between 200 and 500 m have the highest total value of ecosystem services. (5) The overall level of ecosystem services in the Li River Basin is relatively high and continues to rise, but areas with a low ecosystem service value are gradually concentrated. (6) The Moran’s I values for ecosystem services in all four periods are greater than 0, indicating a significant positive spatial autocorrelation. The overall pattern of ecosystem services is relatively stable, but there are significant spatial variations, which are characterized by lower values in the central area and higher values in the surrounding areas. The research findings provide a scientific basis for watershed ecological environment construction, optimal allocation of land resources, and sustainable landscape management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call