Abstract
Plasmaspheric hiss is an important wave mode in the Earth’s radiation belts. Hiss waves can scatter energetic electrons into loss cones to precipitate into the atmosphere, and therefore become an important source of fluctuations, leading the radiation belt to lose electrons . As a function of electron energy and pitch angle, the diffusion coefficient of hiss waves for radiation belt electrons is significantly influenced by the solar wind and geomagnetic activity, and also strongly depends on the spatial position, the background magnetic field, and the plasma density distribution. In order to quickly obtain the diffusion coefficients of hiss waves on electrons in the radiation belt for modelling the global dynamics of the radiation belt, we systematically calculate the diffusion coefficients of hiss waves on electrons in the radiation belt by using the full diffusion code (FDC), and build a four-dimensional matrix database of diffusion coefficients for the spatial region <i>L</i> = 1.5–6, the cold plasma parameter <i>α</i><sup>*</sup> = 3–30, electron energy 1 keV–10 MeV, and electron throw angle 0°–90°. According to the database, we can quickly obtain diffusion coefficients with different <i>L</i> and <i>α</i><sup>*</sup> values through linear interpolations. By comparing the errors between diffusion coefficients calculated by the FDC code and those linearly interpolated from the diffusion coefficient database, the accuracies of interpolated coefficients are validated, showing that most of the errors lie in 10%. The four-dimensional database of hiss wave pitch angle diffusion coefficients for radiation belt electrons and the validated linear interpolation method established in this paper can significantly reduce the time required to obtain global information about hiss wave diffusion coefficients, thereby rapidly improving the computational efficiency of carrying out simulations of spatial and temporal changes in the radiation belts over long periods of time, which in turn is expected to provide favourable conditions for the development of dynamic forecasting models of the Earth's radiation belts.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have