Abstract
Improving prediction computation for time series analysis is still a challenge. Finding a method that combines the benefits of different methodologies is still an open problem. Besides the very efficient prediction combination techniques proposed, there is still a lack of procedures that jointly consider error measure combinations and model constraints. In this work, we propose a new forecast combination procedure based on multi-criteria methods that allows the assignment of weights to different error measures in the objective function and the incorporation of constraints. A real case from the pharmaceutical industry for the sale of a probiotic product is presented to illustrate the performance of the proposal. This method is capable of considering different error measures and non distance based errors, is enriched by the consideration of constraints that consider desirable properties of the solution and is robust with respect to different time series characteristics such as trends, seasonality, etc. Results shows similar accuracy to the best known forecasting methods to date.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.