Abstract
ABSTRACT Multi-objective optimization of water distribution networks (WDNs) is crucial for achieving a balance between cost, equity, and reliability. The present study conducts a comparative analysis, evaluating the effectiveness of four multi-objective optimization algorithms implemented within the EPANET framework for the optimal design of three distinct WDNs taken from the literature. The networks were optimized considering three objectives: maximizing network resilience, and uniformity coefficient (CU, a measure of uniformity), alongside minimizing the cost of the network. Further, multi-criteria decision-making (MCDM) analysis is carried out, encompassing various MCDM techniques and weighting methods, to explore the sensitivity of solution rankings. In Network 1, non-dominated sorting genetic algorithm 2 (NSGA-II) produced suboptimal solutions with CU and In values below 0.4, while caRamel, multi-objective particle swarm optimization based on crowding distance (MOPSO-CD), and multi-objective evolutionary algorithm with decomposition (MOEA/D) showcased increasing CU and In values towards 1, paralleled by a rise in network cost. The performance of NSGA-II in Network 3 was unsatisfactory (CU < 0.32), while the other algorithms demonstrated satisfactory values (>0.98) for reliability and (>0.5) for CU. The findings offer valuable insights into cost-effective strategies for achieving equity in water supply without substantial impact on overall network cost. The findings of the study also underscore the sensitivity of ranking outcomes in MCDM analysis to the choice of technique and weighting method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.