Abstract

We report on design of a multi-color laser set up that allows for high spectral, time and spatial resolution imaging based on second- and third-order optical nonlinearities in soft condensed matter. Two femtosecond optical parametric oscillators (OPOs) are pumped simultaneously to provide intrinsically synchronized pulses at more than a dozen tunable colors across visible and infrared wavelengths. We demonstrate the use of independently tunable OPOs in a variety of imaging modalities. In one useful application, we explore brain tissue in a two-photon absorption fluorescence imaging experiment with near infrared optical pulses (λ ~ 1,070 nm). We also demonstrate second and sum-frequency generation microscopies in different tissues. Results from application of time-resolved, three-color coherent anti-stokes Raman scattering in tissue are presented to demonstrate feasibility of quantitative spectroscopic imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call