Abstract
The interleukin 3 (IL-3), IL-5, and granulocyte/macrophage colony-stimulating factor receptors consist of a cytokine-specific alpha subunit and the common beta subunit. Whereas IL-3 stimulates various lineages of hematopoietic cells, including multipotential progenitors, IL-5 acts mainly as an eosinophil lineage-specific factor. To investigate whether the lineage specificity of IL-5 is due to restricted expression of the IL-5 receptor alpha subunit (IL-5R alpha), we generated transgenic mice that express the mouse IL-5R alpha constitutively by phosphoglycerate kinase promoter. The transgenic mouse expressed IL-5R alpha ubiquitously, and the bone marrow cells formed various types of colonies, including multi-lineage colonies, in response to IL-5. IL-5 also supported formation of both multi-lineage and blast cell colonies from dormant progenitors of the 5-fluorouracil-treated transgenic mice. The cells composing the blast cell colony gave rise to many colonies including multi-lineage colonies when they were replated in secondary culture containing either Il-5 or IL-3. There was no significant difference in replating efficiency or in types of secondary colonies between IL-5- and IL-3-stimulated cultures. Conversely, the cells from the IL-3-induced blast cell colonies of the transgenic mice proliferated in response to either IL-3 or IL-5. Thus, the development of the progenitors can be equally supported by either IL-5 or IL-3, suggesting that intracellular signals from the IL-3R can be replaced by those from IL-5. These results strongly suggest that the lineage specificity of IL-5 is mainly due to the restricted expression of IL-5R alpha.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have