Abstract

Emotional or non-emotional image stimulus is recently applied to event-related potential (ERP) based brain computer interfaces (BCI). Though the classification performance is over 80% in a single trial, a discrimination between those ERPs has not been considered. In this research we tried to clarify the discriminability of four-class ERP-based BCI target data elicited by desk, seal, spider images and letter intensifications. A conventional self organizing map (SOM) and newly proposed discriminant space SOM (ds-SOM) were applied, then the discriminabilites were visualized. We also classify all pairs of those ERPs by stepwise linear discriminant analysis (SWLDA) and verify the visualization of discriminabilities. As a result, the ds-SOM showed understandable visualization of the data with a shorter computational time than the traditional SOM. We also confirmed the clear boundary between the letter cluster and the other clusters. The result was coherent with the classification performances by SWLDA. The method might be helpful not only for developing a new BCI paradigm, but also for the big data analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.