Abstract

Objective. Studies have shown that low frequency components of brain recordings provide information on voluntary hand movement directions. However, non-invasive techniques face more challenges compared to invasive techniques. Approach. This study presents a novel signal processing technique to extract features from non-invasive electroencephalography (EEG) recordings for classifying voluntary hand movement directions. The proposed technique comprises the regularized wavelet-common spatial pattern algorithm to extract the features, mutual information-based feature selection, and multi-class classification using the Fisher linear discriminant. EEG data from seven healthy human subjects were collected while they performed voluntary right hand center-out movement in four orthogonal directions. In this study, the movement direction dependent signal-to-noise ratio is used as a parameter to denote the effectiveness of each temporal frequency bin in the classification of movement directions. Main results. Significant (p < 0.005) movement direction dependent modulation in the EEG data was identified largely towards the end of movement at low frequencies (≤6 Hz) from the midline parietal and contralateral motor areas. Experimental results on single trial classification of the EEG data collected yielded an average accuracy of (80.24 ± 9.41)% in discriminating the four different directions using the proposed technique on features extracted from low frequency components. Significance. The proposed feature extraction strategy provides very high multi-class classification accuracies, and the results are proven to be more statistically significant than existing methods. The results obtained suggest the possibility of multi-directional movement classification from single-trial EEG recordings using the proposed technique in low frequency components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.