Abstract

Objective.In recent years, the robot assisted (RA) rehabilitation training has been widely used to counteract defects of the manual one provided by physiotherapists. However, since the proprioception feedback provided by the robotic assistance or the manual methods is relatively weak for the paralyzed patients, their rehabilitation efficiency is still limited. In this study, a dynamic electrical stimulation (DES) based proprioception enhancement and the associated quantitative analysis methods have been proposed to overcome the limitation mentioned above.Approach.Firstly, the DES based proprioception enhancement method was proposed for the RA neural rehabilitation. In the method, the relationship between the surface electromyogram (sEMG) envelope of the specified muscle and the associated joint angles was constructed, and the electrical stimulation (ES) pulses for the certain joint angles were designed by consideration of the corresponding sEMG envelope, based on which the ES can be dynamically regulated during the rehabilitation training. Secondly, power spectral density, source estimation, and event-related desynchronization of electroencephalogram, were combinedly used to quantitatively analyze the proprioception from multiple perspectives, based on which more comprehensive and reliable analysis results can be obtained. Thirdly, four modes of rehabilitation training tasks, namely active, RA, DES-RA, and ES-only training, were designed for the comparison experiment and validation of the proposed DES based proprioception enhancement method.Main results.The results indicated that the activation of the sensorimotor cortex was significantly enhanced when the DES was added, and the cortex activation for the DES-RA training was similar to that for the active training. Meanwhile, relatively consistent results from the multiple perspectives were obtained, which validates the effectiveness and robustness of the proposed proprioception analysis method.Significance.The proposed methods have the potential to be applied in the practical rehabilitation training to improve the rehabilitation efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.