Abstract
The quality of speech signals recorded in an enclosure can be severely degraded by room reverberation. In this paper, we focus on a class of blind batch methods for speech dereverberation in a noiseless scenario with a single source, which are based on multi-channel linear prediction in the short-time Fourier transform domain. Dereverberation is performed by maximum-likelihood estimation of the model parameters that are subsequently used to recover the desired speech signal. Contrary to the conventional method, we propose to model the desired speech signal using a general sparse prior that can be represented in a convex form as a maximization over scaled complex Gaussian distributions. The proposed model can be interpreted as a generalization of the commonly used time-varying Gaussian model. Furthermore, we reformulate both the conventional and the proposed method as an optimization problem with an lp-norm cost function, emphasizing the role of sparsity in the considered speech dereverberation methods. Experimental evaluation in different acoustic scenarios show that the proposed approach results in an improved performance compared to the conventional approach in terms of instrumental measures for speech quality.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have