Abstract

In many image processing applications, such as parametric range and motion segmentation, multiple instances of a model are fitted to data points. The most common robust fitting method, RANSAC, and its extensions are normally devised to segment the structures sequentially, treating the points belonging to other structures as outliers. Thus, the ratio of inliers is small and successful fitting requires a very large number of random samples, incurring cumbrous computation. This paper presents a new method to simultaneously fit multiple structures to data points in a single run. We model the parameters of multiple structures as a random finite set with multi-Bernoulli distribution. Simultaneous search for all structure parameters is performed by Bayesian update of the multi-Bernoulli parameters. Experiments involving segmentation of numerous structures show that our method outperforms well-known methods in terms of estimation error and computational cost. The fast convergence and high accuracy of our method make it an excellent choice for real-time estimation and segmentation of multiple structures in image processing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.