Abstract

A method for simultaneous segmentation of multiple anatomical brain structures from multi-modal MR images has been developed. An artificial neural network (ANN) was trained from a set of feature vectors created by a combination of high-resolution registration methods, atlas based spatial probability distributions, and a training set of 16 expert traced data sets. A set of feature vectors were adapted to increase performance of ANN segmentation; 1) a modified spatial location for structural symmetry of human brain, 2) neighbors along the priors descent for directional consistency, and 3) candidate vectors based on the priors for the segmentation of multiple structures. The trained neural network was then applied to 8 data sets, and the results were compared with expertly traced structures for validation purposes. Comparing several reliability metrics, including a relative overlap, similarity index, and intraclass correlation of the ANN generated segmentations to a manual trace are similar or higher to those measures previously developed methods. The ANN provides a level of consistency between subjects and time efficiency comparing human labor that allows it to be used for very large studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.