Abstract
Herein, we fabricated and investigated the carbon nanotube (CNT) integrated metamaterial for orthogonal polarization control in the THz regime, which is composed of a sandwiched CNT layer with the adjacent metal gratings in the sub-wavelength integration. Under the mechanism of multilayer polarization selection and multiple reflections in CNT constructed micro-cavity, the perfect orthogonal polarization conversion is achieved and the transmittance spectrum presents multi-band peaks and valleys, which coincide with the theoretical Fabry-Perot resonance. Besides, by controlling the layer number and orientations of the middle CNT, the active modulation of the amplitude and phase in compound metamaterials are realized. Based on the simulation of CNT in the grating model, it obtains a good agreement with the experimental results, and the simulated electric field distribution also confirmed the inner polarization conversion mechanism. This work combines nanomaterials with optical microstructures and successfully applies them to the THz polarization control, which will bring new ideas for design novel THz devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.