Abstract

In this paper, 100 Gb/s/λ 32 quadrature amplitude modulation discrete multi-tone (QAM-DMT) transmission using 10 G-class electro-absorption modulated laser (EML) and 4/5-bit digital-to-analog converters (DACs) are experimentally demonstrated to meet the requirement of intra-datacenter interconnection (intra-DCI). Unequal length multi-band (ULM) discrete Fourier transform spread (DFT-S) precoding is investigated to alleviate the distortion induced by the high peak-to-average power ratio (PAPR) of DMT. The results show that the required computational complexity of ULM DFT-S precoding with 2-bands (k1=256, k2=64) decreases sharply compared to the traditional DFT-S technique with only about 0.5 dB receiver sensitivity penalty. In addition, compared to the equal length multi-band (ELM) DFT-S precoding, the ULM DFT-S precoding can bring about 2.5 dB receiver sensitivity improvement with slight added computational complexity. With the assistance of ULM DFT-S precoding and noise shaping (NS) technique, the bit-error ratio (BER) of 100 Gb/s 32 QAM-DMT signal generated by 5-bit DAC over 2-km single-mode fiber (SMF) transmission can reach the hard-decision forward error correction (HD-FEC) threshold with received optical power (ROP) of -6.5 dBm, with only additional 39.9% multiplier and 33.7% adder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call