Abstract
Automated guided vehicle (AGV) is an important transportation equipment, which is widely used in warehouses and factories. In the scenarios of multi-AGVs application, an efficient AGVs task assignment strategy is beneficial for transportation costs, balance of workload and increasing distribution efficiency. The traditional method usually depends on a powerful scheduling system, which solves the task assignment problem in a regular way. In this paper, we present a decentralized framework of multi-task allocation with attention (MTAA) in deep reinforcement learning, which combines with the methods of task assignment in balance and path planning in cooperation for distribution application. As for task assignment balance, we adopt DNN network to achieve task assignment equilibrium. In multi-AGVs path planning, methods of A3C are embedded in MTAA framework, which are instrumental in improving the stationarity and performance in deep reinforcement learning application. In experiments, we designed two different scenarios under different obstacles to verify the performance of MTAA-A3C and MTAA-DQN methods. The experiments show that the proposed approach has feasibility and effectiveness used in multi-AGVs application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.