Abstract
A stochastic structure for single and multi-agent level set method is investigated in this article in an attempt to overcome local optima problems in image segmentation. Like other global optimization methods that take advantage of random operators and multi-individual search algorithms, the best agent in this proposed algorithm plays the role of leader in order to enable the algorithm to find the global solution. To accomplish this, the procedure employs a set of stochastic partial differential equations (SPDE), each one of which evolves based on its own stochastic dynamics. The agents are then compelled to simultaneously converge to the best available topology. Moreover, the stochastic dynamics of each agent extends the stochastic level set approach by using a multi source structure. Each source is a delta function centered on a point of evolving front. Lastly, while the computational costs of these methods are higher than the region-based level set method, the probability of finding the global solution is significantly increased.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.