Abstract

This paper extends a study on improving the performance of reduction-based solvers for the problem of multi-agent pathfinding. The task is to navigate a set of agents in a graph without collisions. Solvers that reduce this problem to other formalisms often have issues scaling to larger instances in terms of the graph size. A previous study suggests that pruning the graph of most vertices based on a randomly chosen shortest path for each agent. In this paper, we study the effect of different choices of these paths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call