Abstract
Electric vehicles (EVs) are a sustainable transportation solution with environmental benefits and energy efficiency. However, their popularity has raised challenges in locating appropriate charging stations, especially in cities with limited infrastructure and dynamic charging demands. To address this, we propose a multi-agent deep deterministic policy gradient (MADDPG) method for optimal EV charging station recommendations, considering real-time traffic conditions. Our approach aims to minimize total travel time in a stochastic environment for efficient smart transportation management. We adopt a centralized learning and decentralized execution strategy, treating each region of charging stations as an individual agent. Agents cooperate to recommend optimal charging stations based on various incentive functions and competitive contexts. The problem is modeled as a Markov game, suitable for analyzing multi-agent decisions in stochastic environments. Intelligent transportation systems provide us with traffic information, and each charging station feeds relevant data to the agents. Our MADDPG method is challenged with a substantial number of EV requests, enabling efficient handling of dynamic charging demands. Simulation experiments compare our method with DDPG and deterministic approaches, considering different distributions and EV numbers. The results highlight MADDPG’s superiority, emphasizing its value for sustainable urban mobility and efficient EV charging station scheduling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.