Abstract
The implementation of automation has already had a considerable impact on chemical and pharmaceutical industrial laboratories. However, academic laboratories have often been more reluctant to adopt such technology due to the high cost of commercial liquid handling systems, although, in many instances, there would be a huge potential to automate repetitive tasks, resulting in elevated productivity. We present here a detailed description of the setup, validation, and utilization of a multifunctional liquid automation (MULA) system that can be used to automate various chemical and biological tasks. Considering that such a setup must be highly customizable, we also designed MULA with respect to modularity, providing detailed insight as far as possible. Including all 3D-printed parts and the used Hamilton gastight micro syringe, the total construction cost is approximately 700 €. This allows us to achieve a highly reliable and accurate system that exceeds the precision of a classical air displacement pipette while still retaining the ability to use closed vial (septa) setups. To encourage other groups to adopt this setup, detailed instructions and tips for every step of the process are provided, along with the complete CAD design of MULA and control code, which are freely available for download under the CC BY NC 3.0 license.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.