Abstract
By making use of the hybrid collinear and high-energy factorization, where the BFKL resummation of leading and next-to-leading energy logarithms is combined with the standard description in terms of collinear parton densities, we compare predictions for Mueller-Navelet jet rapidity and angular differential rates with data collected by CMS at $\sqrt{s} = 7$ TeV. We provide an evidence that the study of azimuthal distributions, calculated as a Fourier sum of correlation moments and embodying the high-energy signal coming from all conformal-spin modes, permits us to overcome the well-known issues emerging in the description of Mueller-Navelet final states at natural values of the renormalization scale. We come out with a clear indication that the next-to-leading BFKL description of these observables at natural scales is valid when the rapidity interval between the two jets is large, and it allows us to catch the core high-energy dynamics emerging from data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.