Abstract
The liver is the most common site of metastasis for colorectal cancer (CRC). Metastasis suppressor 1 (MTSS1), a potential tumor suppressor gene associated with tumor metastasis, has been reported to play an important role in cancer development. The present study aimed to investigate the effects and underlying mechanisms of MTSS1 on the biological behavior of CRC cells both in vitro and in vivo. A CRC mouse model with a high liver metastatic potential was established by injecting mice with SW1116 cells, and the association between MTSS1 expression levels and the metastatic potential of forming liver metastasis lesions was subsequently analyzed. MTSS1 gain- and loss-of-function experiments were performed by transfecting the CRC cell lines, SW1116 and DLD-1, with Plvx-IRES-ZsGreen1-MTSS1 plasmid and short hairpin RNA, respectively. Cell proliferation, migration, invasion and cell cycle distribution were analyzed by MTT, Transwell and flow cytometric assays, respectively. To further determine the underlying mechanisms of MTSS1 in CRC, the expression levels of cell surface chemokine C-X-C receptor 4 (CXCR4) and its downstream signaling factors, Rac and cell division cycle 42 (CDC42), were analyzed with or without C-X-C motif chemokine ligand 12 (CXCL12) stimulation. The results revealed that as the CRC metastatic potential increased, the expression levels of MTSS1 decreased. The overexpression of MTSS1 exerted an inhibitory effect on cell proliferation, migration and invasion, while the knockdown of MTSS1 exerted the opposite effects in vitro. Flow cytometric analysis and western blot analysis demonstrated that MTSS1 negatively regulated the expression levels of cell surface CXCR4 and its downstream signaling pathway activation. On the whole, the results of the present study indicate that MTSS1 may play an important negative role in CRC metastasis and the underlying mechanisms may involve the downregulation of the CXCR4/CXCL12 signaling axis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.