Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that belongs to the phosphoinositide-3-kinase-related family and has a crucial role in the integration of growth factors, energy factors and nutrient signaling. Abnormal activity of mTOR kinase can cause many neuropathologies, including brain tumours and neurodegenerative diseases. The study confirms that the use of a kinase inhibitor - rapamycin, allows to limit proliferation including inhibition of tumor cells and immune responses. The review presents current knowledge about the role of mTOR in the modulation of nervous system activity focusing on astrocytes which are involved in the maintenance of nervous system homeostasis and support neuronal function. Astroglial activity is associated with the pathogenesis of neurodegenerative diseases like Alzheimer's disease (AD) or Parkinson's disease (PD). Effect of mTOR and its inhibitor on central nervous system functions, in particular astrocytes, is still not fully undersood.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.