Abstract

To explain why mitochondrial DNA (mtDNA)-depleted or rho0 cells still keep a mitochondrial membrane potential (Delta(psi)m) in the absence of respiration, several hypotheses have been proposed. The principal and well accepted one involves a reverse of action for ANT combined to F1-ATPase activity. However, the existence of other putative electrogenic channels has been speculated. Here, using mRNA differential display reverse transcriptase-polymerase chain reaction on L929 mtDNA-depleted cells, we identified mtCLIC as a differentially expressed gene in cells deprived from mitochondrial ATP production. Mitochondrial chloride intracellular channel (mtCLIC), a member of a recently discovered and expanding family of chloride intracellular channels, is up-regulated in mtDNA-depleted and rho0 cells. We showed that its expression is dependent on CREB and p53 and is sensitive to calcium and tumor necrosis factor alpha. Interestingly, up- or down-regulation of mtCLIC protein expression changes Delta(psi)m whereas the chloride channel inhibitor NPPB reduces the Delta(psi)m in mtDNA-depleted L929 cells, measured with the fluorescent probe rhodamine 123. Finally, we demonstrated that purified mitochondria from mtDNA-depleted cells incorporate, in a NPPB-sensitive manner, more 36chloride than parental mitochondria. These findings suggest that mtCLIC could be involved in mitochondrial membrane potential generation in mtDNA-depleted cells, a feature required to prevent apoptosis and to drive continuous protein import into mitochondria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.