Abstract
Myostatin (MSTN) is a negative regulator of skeletal muscle growth and development. It can inhibit the proliferation of myoblasts and serve as an important candidate gene for animal breed improvement. Mutations of the MSTN gene can cause extensive skeletal muscle hyperplasia and hypertrophy, resulting in "double muscle" symptoms. This leads to reduction of animal fat differentiation and increase of muscle content, thereby meeting the demand for quality consumption of animal meat in the market. In order to obtain a double-muscle phenotype using mutant MSTN gene in cloned goat, the goat MSTN gene was target-modified by TALENs. In this study, the TALENs expression vector was designed and constructed in the first exon sequence of the goat MSTN gene, which was then transfected into the goat fetal fibroblasts. The resistant cell lines were obtained by puromycin selection, and the cell lines with the MSTN gene mutations were analyzed by PCR and gene sequencing, thereby identifying the mutation type(s). The MSTN gene mutant cell lines were used as the nuclear donor cells in somatic cell nuclear transfer procedures in goats, and The morphological structure of the muscle tissue of the goats with MSTN gene mutations was analyzed by tissue section. The body weight of the cloned goats were monitored at different months of age, which provided the growth trend of their weight at different developmental stages. The results show that a total of 109 MSTN gene mutant cell lines were obtained. The mutation efficiency was 79.0% (109/138), of which 46 were biallelic mutations, accounting for 33.3% (46/138) of the total cell lines. Four MSTN gene mutant cell lines (1 biallelic homozygous mutation, 3 non-homozygous mutations) with good growth status were selected for somatic cell nuclear transfer in 12 recipients, of which 4 were pregnant by B-ultrasound at 30 days, indicating the a 33.3% (4/12) pregnancy rate. Two cloned goats were born at the end of the pregnancy. Sequencing analysis showed that there was no mutation in one allele of the M-1 cloned lamb, and the other allele harbored a 3 bp-deletion. The M-2 cloned lamb harbored a 1 bp base insertion in one allele of the MSTN gene, and a deletion of 13 bp in the other allele, resulting in mutations in both alleles and the loss of the protein-coding sequence of MSTN after the mutation site. In addition, the muscle fibers of cloned M-1 goats are tightly arranged and thick, and their monthly body weight is higher than that of normal wild-type goats. However, it is still consistent with the growth trend of normal wild-type goats and the M-1 goats can develop into healthy adults. In summary, this study showed that goat fetal fibroblasts with the multiple MSTN gene mutations were successfully obtained by TALENs technology, and cloned goats with mutant MSTN genes could be generated by somatic cell nuclear transfer method, thereby providing a technical foundation for the cultivation of the "double muscle" phenotype goats, and serving as a reference method for the preparation of other transgenic animals in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.