Abstract

Objective. Convolutional neural network (CNN) is developing rapidly in the field of medical image registration, and the proposed U-Net further improves the precision of registration. However, this method may discard certain important information in the process of encoding and decoding steps, consequently leading to a decline in accuracy. To solve this problem, a multi-channel semantic-aware and residual attention mechanism network (MSRA-Net) is proposed in this paper. Approach. Our proposed network achieves efficient information aggregation by cleverly extracting the features of different channels. Firstly, a context-aware module (CAM) is designed to extract valuable contextual information. And the depth-wise separable convolution is employed in the CAM to alleviate the computational burden. Then, a new multi-channel semantic-aware module (MCSAM) is designed for more comprehensive fusion of up-sampling features. Additionally, the residual attention module is introduced in the up-sampling process to extract more semantic information and minimize information loss. Main results. This study utilizes Dice score, average symmetric surface distance and negative Jacobian determinant evaluation metrics to evaluate the influence of registration. The experimental results demonstrate that our proposed MSRA-Net has the highest accuracy compared to several state-of-the-art methods. Moreover, our network has demonstrated the highest Dice score across multiple datasets, thereby indicating that the superior generalization capabilities of our model. Significance. The proposed MSRA-Net offers a novel approach to improve medical image registration accuracy, with implications for various clinical applications. Our implementation is available at https://github.com/shy922/MSRA-Net.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.