Abstract

Image registration is the process of aligning two or more images in a single coordinate. Nowadays, medical image registration plays a significant role in computer-assisted disease diagnosis, treatment, and surgery. The different modalities available in the medical image make medical image registration an essential step in Computer Assisted Diagnosis (CAD), Computer- Aided Therapy (CAT) and Computer-Assisted Surgery (CAS). Recently, many learning-based methods were employed for disease detection and classification, but those methods were not suitable for real-time due to delayed response and the need for pre-alignment and labeling. The proposed research constructed a deep learning model with Rigid transform and B-Spline transform for medical image registration for an automatic brain tumour finding. The proposed research consists of two steps. The first step uses Rigid transformation based Convolutional Neural Network and the second step uses B-Spline transform-based Convolutional Neural Network. The model is trained and tested with 3624 MR (Magnetic Resonance) images to assess the performance. The researchers believe that MR images help in the success of the treatment of patients with brain tumour. The result of the proposed method is compared with the Rigid Convolutional Neural Network (CNN), Rigid CNN + Thin-Plat Spline (TPS), Affine CNN, Voxel morph, ADMIR (Affine and Deformable Medical Image Registration) and ANT(Advanced Normalization Tools) using DICE score, Average Symmetric surface Distance (ASD), and Hausdorff distance. The RBCNN model will help the physician to automatically detect and classify the brain tumor quickly (18 Sec) and efficiently without doing pre-alignment and labeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.