Abstract
In the paper, modulation spectral features (MSFs) are proposed for the automatic emotional recognition for speech signal. The features are extracted from an auditory-inspired long-term spectro-temporal(ST) representation. On an experiment assessing classification of 4 emotion categories, the MSFs show promising performance in comparison with features that are based on mel-frequency cepstral coefficients and perceptual linear prediction coefficients, two commonly used short-term spectral representations. The MSFs further express a substantial improvement in recognition performance when used to augment prosodic features, which have been extensively used for speech emotion recognition. Using both types of features, an overall recognition rate of 91.55% is obtained for classifying 4 emotion categories.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.