Abstract

ObjectiveSmooth muscle cells contribute significantly to lipid-laden foam cells in atherosclerotic plaques. However, the underlying mechanisms transforming smooth muscle cells into foam cells are poorly understood. The purpose of this study was to gain insight into the molecular mechanisms regulating smooth muscle foam cell formation. Approach and resultsUsing human coronary artery smooth muscle cells we found that the transcriptional co-activator MRTFA promotes lipid accumulation via several mechanisms, including direct transcriptional control of LDL receptor, enhanced fluid-phase pinocytosis and reduced lipid efflux. Inhibition of MRTF activity with CCG1423 and CCG203971 significantly reduced lipid accumulation. Furthermore, we demonstrate enhanced MRTFA expression in vascular remodeling of human vessels. ConclusionsThis study demonstrates a novel role for MRTFA as an important regulator of lipid homeostasis in vascular smooth muscle cells. Thus, MRTFA could potentially be a new therapeutic target for inhibition of vascular lipid accumulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call