Abstract

Ischemic reperfusion injury (IRI) remains a significant challenge in various clinical settings, including stroke. Despite advances in reperfusion strategies, the restoration of blood flow to ischemic tissues often exacerbates tissue damage through a complex cascade of cellular and molecular events. In recent years, there has been growing interest in identifying novel therapeutic targets to ameliorate the detrimental effects of IRI and improve patient outcomes. This review critically evaluates emerging therapeutic targets and strategies for IRI management, such as R-spondin 3, neurolysin, glial cell gene therapy and inter alpha inhibitors. Diverse pathophysiology involved in IRI stroke such as oxidative stress, inflammation, mitochondrial dysfunction, and ferroptosis are also closely discussed. Additionally, we explored the intricate interplay between inflammation and IRI, focusing on cell-mediated gene therapy approaches and anti-inflammatory agents that hold promise for attenuating tissue damage. Moreover, we delve into novel strategies aimed at preserving endothelial function, promoting tissue repair, and enhancing cellular resilience to ischemic insults. Finally, we discuss challenges, future directions, and translational opportunities for the development of effective therapies targeting ischemic reperfusion injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.