Abstract

Early identification and intervention of abnormal brain development individual subjects are of great significance, especially during the earliest and most active stage of brain development in children aged under 3. Neuroimage-based brain's biological age has been associated with health, ability, and remaining life. However, the existing brain age prediction models based on neuroimage are predominantly adult-oriented. Here, we collected 658 T1-weighted MRI scans from 0 to 3years old healthy controls and developed an accurate brain age prediction model for young children using deep learning techniques with high accuracy in capturing age-related changes. The performance of the deep learning-based model is comparable to that of the SVR-based model, showcasing remarkable precision and yielding a noteworthy correlation of 91% between the predicted brain age and the chronological age. Our results demonstrate the accuracy of convolutional neural network (CNN) brain-predicted age using raw T1-weighted MRI data with minimum preprocessing necessary. We also applied our model to children with low birth weight, premature delivery history, autism, and ADHD, and discovered that the brain age was delayed in children with extremely low birth weight (less than 1000g) while ADHD may cause accelerated aging of the brain. Our child-specific brain age prediction model can be a valuable quantitative tool to detect abnormal brain development and can be helpful in the early identification and intervention of age-related brain disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.