Abstract

In recent years, there has been an explosive growth of magnetic resonance imaging (MRI) techniques that allow faster scan speed by exploiting temporal or spatiotemporal redundancy of the images. These techniques improve the performance of dynamic imaging significantly across multiple clinical applications, including cardiac functional examinations, perfusion imaging, blood flow assessment, contrast-enhanced angiography, functional MRI, and interventional imaging, among others. The scan acceleration permits higher spatial resolution, increased temporal resolution, shorter scan duration, or a combination of these benefits. Along with the exciting developments is a dizzying proliferation of acronyms and variations of the techniques. The present review attempts to summarize this rapidly growing topic and presents conceptual frameworks to understand these techniques in terms of their underlying mechanics and connections. Techniques from view sharing, keyhole, k-t, to compressed sensing are covered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.