Abstract
Recently, a new MRI-based classification for evaluating tibial spine fractures (TSFs) was developed to aid in treating these injuries. Our objective was to assess the detection efficacy, classification accuracy, and reliability of this classification in detecting and grading TSFs, as well as its impact on treatment strategy, compared to the Meyers and McKeever (MM) classification. A retrospective study included 68 patients with arthroscopically confirmed TSFs. All patients had plain radiography and conventional MRI of the affected knee before arthroscopy. Three experienced radiologists independently reviewed all plain radiographs and MRI data and graded each patient according to MM and MRI-based classifications. The detection efficacy, classification accuracy, and inter-rater agreement of both classifications were evaluated and compared, using arthroscopic findings as the gold standard. The final analysis included 68 affected knees. Compared to the MM classification, the MRI-based classification produced 22.0% upgrade of TSFs and 11.8% downgrade of TSFs. According to the reviewers, the fracture classification accuracy of the MRI-based classification (91.2-95.6%) was significantly higher than that of the MM classification (73.5-76.5%, p=0.002-0.01). The fracture detection rate of MRI-based classification (94.1-98.5%) was non-significantly higher than that of the MM classification (83.8-89.7%, p=0.07-0.4). The soft tissue injury detection accuracy for MRI-based classification was 91.2-94.1%. The inter-rater reliability for grading TSFs was substantial for both the MM classification (κ=0.69) and MRI-based classification (κ=0.79). MRI-based classification demonstrates greater accuracy and reliability compared to MM classification for detecting and grading TSFs and associated soft tissue injuries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.