Abstract

How cell morphology is maintained in thermophilic bacteria is unknown. In this study, the functions and mechanisms of the potential cell shape determinants (e.g. MreB, MreC, MreD and RodA homologues) of the model extremely thermophilic bacterium Thermus thermophilus were initially analyzed. Deletion of mreC, mreD or rodA only resulted in heterozygous mutants indicating that these genes are all essential. In the MreB-inhibited (by A22) strain and the heterozygous mreC, mreD or rodA mutant, cell morphologies were drastically changed, and enlarged spherical cells were eventually dead indicating that they are vital for cell shape maintenance. When fused to sGFP, MreB, MreC, MreD, RodA, and the enzymes involved in peptidoglycan synthesis (e.g. PBP2 and MurG) exhibited similar subcellular localization pattern, appearing as patches, or bands slightly angled to the cell length. The localizations and functions of all the 6 proteins required a natural peptidoglycan synthesis pattern, additionally those of MreD, RodA and MurG were dependent on MreB polymerization. Consistently, through comprehensive bacterial two-hybrid analyses, it was revealed that MreB could interact with itself, MreC, MreD, RodA and MurG, and MreC could associate with PBP2. In conclusion, in T. thermophilus, MreB, MreC, MreD, RodA and the peptidoglycan synthesis enzymes probably form a network of interactions centered with MreB and bridged with MreC, thereby maintaining cell morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call