Abstract
Breast cancer is the most prevalent cancer among women globally, making early and accurate detection essential for effective treatment and improved survival rates. This paper presents a method designed to detect and localize breast cancer using deep learning, specifically convolutional neural networks. The approach classifies histological images of breast tissue as either tumor-positive or tumor-negative. We utilize several deep learning models, including a custom-built CNN, EfficientNet, ResNet50, VGG-16, VGG-19, and MobileNet. Fine-tuning was also applied to VGG-16, VGG-19, and MobileNet to enhance performance. Additionally, we introduce a novel deep learning model called MR_Net, aimed at providing a more accurate network for breast cancer detection and localization, potentially assisting clinicians in making informed decisions. This model could also accelerate the diagnostic process, enabling early detection of the disease. Furthermore, we propose a method for explainable predictions by generating heatmaps that highlight the regions within tissue images that the model focuses on when predicting a label, revealing the detection of benign, atypical, and malignant tumors. We evaluate both the quantitative and qualitative performance of MR_Net and the other models, also presenting explainable results that allow visualization of the tissue areas identified by the model as relevant to the presence of breast cancer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have