Abstract
Single image super-resolution (SR) has been shown useful in Magnetic Resonance (MR) image based diagnosis, where the image resolution is still limited. The basic goal of single image SR is to produce a high-resolution (HR) image from corresponding low-resolution (LR) image. However, most existing SR algorithms often fail to: (1) reflect the intrinsic structure between MR images and (2) exploit the intra-patient information of MR images. In fact, MR images are more likely to vary along a low dimensional submanifold, which can be embedded in the high dimensional space. It has also been shown that the structure information of MR images and the priors of the MR images of different modality are important for improving the image resolution. To take full advantage of manifold structure information and intra-patient prior of MR images, a novel single image super-resolution algorithm for MR images is proposed in this paper. Compared with the existing works, the proposed algorithm has the following merits: (1) the proposed sparse coding based algorithm integrates manifold constraints to handle the inverse problem in MR image SR; (2) the manifold structure of the intra-patient MR image is considered for image SR; and (3) the topological structure of the intra-patient MR image can be preserved to improve the reconstructed result. Experiments show that the proposed algorithm is more effective than the state-of-the-art algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.