Abstract
High resolution (HR) magnetic resonance (MR) images are crucial for medical diagnosis. However, in practice, low resolution MR images are often acquired due to hardware limitation. In this work, we propose a gating feature dense network to reconstruct HR MR images from low resolution acquisitions, where we use local residual dense block (LRDB) as the backbone. We propose gating mechanism, which includes absorption gate and release gate, to adaptively introduce the informative features of previous LRDBs to current LRDB to solve the problem of insufficient features sharing. The absorption gate can fuse the output feature of LRDBs with adaptive weights, which allows the model to adaptively learn the effects of different LRDBs for MR image super-resolution (SR). Experimental results show that our proposed method achieves a new state-of-the-art quantitative and visual performance in anisotropic MR image SR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.